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OrganizationOrganization

• A. Problem setting 
• B. SPSA algorithm
• C. Theoretical foundation
• D. Practical guidelines–MATLAB code
• E. Numerical example
• F. Adaptive simultaneous perturbation method
• G. Extensions and further results

Additional information available at www.jhuapl.edu/SPSA
(reference list, background articles, MATLAB code, and 
video)
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A. PROBLEM SETTINGA. PROBLEM SETTING
• Focus here is on stochastic search and optimization:

A. Random noise in input information (e.g., noisy A. Random noise in input information (e.g., noisy 
measurements of loss function)measurements of loss function)

— and/or —
B. Injected randomness (Monte Carlo) in choice of B. Injected randomness (Monte Carlo) in choice of 
algorithm iteration magnitude/directionalgorithm iteration magnitude/direction

• Contrasts with deterministic methods
— E.g., steepest descent, Newton-Raphson, etc.
— Assume perfect information about L(θ) (and its gradient)
— Search magnitude/direction deterministic at each iteration

• Injected randomness (B) in search magnitude/direction can 
offer benefits in efficiency and robustness
— E.g., Capabilities for global (vs. local) optimization
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Some Popular Stochastic Search and Some Popular Stochastic Search and 
Optimization TechniquesOptimization Techniques

• Random search
• Stochastic approximation

— Robbins-Monro and Kiefer-Wolfowitz
— SPSA
— NN backpropagation
— Infinitesimal perturbation analysis
— Recursive least squares
— Many others

• Simulated annealing
• Evolutionary computation and genetic algorithms
• Reinforcement learning
• Markov chain Monte Carlo (MCMC)
• Etc.
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Baseline Problem Setting for SPSA Baseline Problem Setting for SPSA 
AlgorithmAlgorithm

• Consider standard minimization setting, i.e., find root θ∗ to

where L(θ) is scalar-valued loss function to be minimized 
and θ is p-dimensional vector

• Assume only (possibly noisy) measurements of L(θ) 
available
– No direct measurements of g(θ) used, as are required in 

stochastic gradient methods

• Noisy measurements of L(θ) in areas such as Monte Carlo 
simulation, real-time control/estimation, etc.

• Interested in p > 1 setting (including p >> 1)

∂
= =

∂
θ

θ 0
θ

L( )( )g
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B. SPSA ALGORITHMB. SPSA ALGORITHM
• Let     (θ) denote SP estimate of g(θ) at kth iteration
• Let      denote estimate for θ∗ at kth iteration
• SPSA algorithm has form

where {ak} is nonnegative gain sequence

• Generic iterative form above is standard in SA; stochastic 
analogue to steepest descent

• Under conditions, → θ∗ in some stochastic sense as 
k→∞

+ = −k k k k ka g1ˆ ˆ ˆˆ ( )θ θ θ

kθ̂

kĝ

kθ̂
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Computation of     Computation of     ((••)) (Heart of SPSA)(Heart of SPSA)
• Let      be vector of p independent random variables at kth

iteration

• typically generated by Monte Carlo
• Let {ck} be sequence of positive scalars
• For iteration k → k+1, take measurements at design 

levels:

where       are measurement noise terms 
• Common special case is when  

(e.g., system identification with perfect measurements 
of the likelihood function)

kĝ
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Computation of     Computation of     ((••) ) (cont(cont’’d)d)
• The standard SP form for     (•):

• Note that (•) only requires two measurements of L(•) 
independent of p

• Above SP form contrasts with standard finite-difference 
approximations taking 2p (or p+1) measurements

• Intuitive reason why     (•) is appropriate is that 
formalized in Section C

kĝ
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Essential Conditions for SPSAEssential Conditions for SPSA
• To use SPSA, there are regularity conditions on L(θ), choice 

of Δk, the gain sequences {ak}, {ck}, and the measurement 
noise
– Sections 7.3 and 7.4 of ISSO present essential conditions

• Roughly speaking the conditions are:
A. L(θ) smoothness: L(θ) is thrice differentiable function 

(can be relaxed—see Section 7.3 of ISSO)
B. Choice of Δk distribution: For all k, Δk has independent 

components, symmetrically distributed around 0, and 

– Bounded inverse moments condition is critical (excludes
Δki being normally or uniformly distributed)

– Symmetric Bernoulli Δki = ±1 (prob = ½ for each outcome) 
is allowed; asymptotically optimal (see Section G or Section 
7.7 of ISSO)

ki kiE  E2 2( ) , ( )−Δ < ∞ Δ < ∞
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Essential Conditions for SPSA (contEssential Conditions for SPSA (cont’’d)d)
C. Gain sequences: standard SA conditions:

(better to violate some of these gain conditions in certain 
practical problems; e.g., nonstationary tracking and 
control where ak = a > 0, ck = c > 0 ∀ k, i)

D. Measurement Noise: Martingale difference

∀ k sufficiently large. (Noises not required to be 
independent of each other or of current/previous     and 
Δk values.) Alternative condition (no martingale mean 0 
assumption needed) is that        be bounded ∀ k

k k k k

k
k

k k k
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Valid and Invalid Perturbation DistributionsValid and Invalid Perturbation Distributions
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C. THEORETICAL FOUNDATIONC. THEORETICAL FOUNDATION

Three QuestionsThree Questions

Question 1:Question 1: Is     (•) a valid estimator for g(•)?
Answer:Answer: Yes, under modest conditions.

Question 2:Question 2: Will the algorithm converge to θ∗?
Answer:Answer: Yes, under reasonable conditions.

Question 3:Question 3: Do savings in data/iteration lead to a 
corresponding savings in converging to 
optimum?

Answer:Answer: Yes, under reasonable conditions.

kĝ
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Near Near UnbiasednessUnbiasedness of     (of     (••) ) 
• SPSA stochastic analogue to deterministic algorithms if        

is “on average” same as g(θ) for any θ
• Suppressing iteration index k, mth component of   (θ) is:

• With                       we have for any m:

θkˆ ( )g
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IIllustration of Nearllustration of Near--UnbiasednessUnbiasedness for    (for    (••) with ) with 
p p = 2= 2 and Bernoulli Perturbationsand Bernoulli Perturbationsk

ĝ

7-15
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Theoretical Basis (Sects. 7.3 Theoretical Basis (Sects. 7.3 –– 7.4 of 7.4 of ISSOISSO))
• Under appropriate regularity conditions (e.g.,              

thrice continuously differentiable,        is martingale difference 
noise, etc.), we have:

• Near Unbiasedness

• Convergence:

• Asymptotic Normality:

where μ, Σ, and β depend on SA gains, Δk distribution, and 
shape of L(θ)

k cwhere 0→

= +k k k k kE O c  2ˆ ˆ ˆˆ[ ( ) ] ( ) ( ) a.s.θ θ θg g

ˆ  a.s.  as k k∗→ → ∞θ θ

dist./ 2 2
3ˆ( ) ( , ), 0kk N   β ∗− ⎯⎯→ < β ≤θ θ μ Σ

−Δ < ∞kiE L2( ) , ( )θ
k
( )±ε
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Efficiency AnalysisEfficiency Analysis
• Can use asymptotic normality to analyze relative efficiency 

of SPSA and FDSA (Spall, 1992; Sect. 7.4 of ISSO)

• Analogous to SPSA asymptotic normality result, FDSA is 
also asymptotically normal (Chap. 6 of ISSO)

The critical cost in comparing relative efficiency 
of SPSA and FDSA is number of loss function 
measurements y(•), not number of iterations per se

• Loss function measurements represent main cost (by 
far)—other costs are trivial

• Full efficiency story is fairly complex—see Section 7.4 of 
ISSO and references therein
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Efficiency Analysis (contEfficiency Analysis (cont’’d)d)
• Will compare SPSA and FDSA by looking at relative mean 

square error (MSE) of θ estimate

• Consider relative MSE for same no. of measurements, n
(not same no. of iterations). Under regularity 
conditions above:

☺

• Equivalently, to achieve same asymptotic MSEsame asymptotic MSE

☺ 
☺

• Results ☺ and ☺ ☺ are main theoretical results 
j tif i SPSA

( )
( ) β

∗

∗

−
→ < β ≤

−

θ θ

θ θ

SPSA n

FDSA n

E

pE

2
,

2
32

,

ˆ 1 , 0
ˆ

nas → ∞

=
no  meas  y in SPSA
no  meas  y in FDSA p

. . ( ) 1

. . ( )
θ
θ
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Paraphrase of Paraphrase of ☺ ☺☺ ☺ above:above:

• SPSA and FDSA converge in same number of iterations 
despite p-fold savings in cost/iteration for SPSA

— or —

• One properly generated simultaneous random change of 
all variables in a problem contains as much information 
for optimization as a full set of one-at-a-time changes 
of each variable
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D. PRACTICAL GUIDELINES ANDD. PRACTICAL GUIDELINES AND
MATLABMATLAB CODECODE

• The code below implements SPSA iterations k = 1,2,...,n
– Initialization for program variables theta, alpha, etc. 

not shown since that can be handled in numerous ways 
(e.g., file read, direct inclusion, input during execution)

– elements are generated by Bernoulli ±1
– Program calls external function loss to obtain y(θ) 

values
• Simple enhancements possible to increase algorithm stability 

and/or speed convergence
– Check for simple constraint violation (shown at bottom of 

sample code)
– Reject iteration                 if              is too much greater 

than          (requires extra loss measurement per iteration)
– Reject iteration                if                 is too large (does 

not require extra loss measurement)

kΔ

k k 1→ + +ky 1ˆ( )θ

ky ˆ( )θ
k k 1→ + 1ˆ ˆk k+ −θ θ
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MatlabMatlab CodeCode
for k=1:n

ak=a/(k+A)^alpha;
ck=c/k^gamma;
delta=2*round(rand(p,1))-1;
thetaplus=theta+ck*delta;
thetaminus=theta-ck*delta;
yplus=loss(thetaplus);
yminus=loss(thetaminus);
ghat=(yplus-yminus)./(2*ck*delta);
theta=theta-ak*ghat;

end
theta

If maximum and minimum values on elements of theta can be 
specified, say thetamax and thetamin, then two lines can be 
added below theta update line to impose constraints:

theta=min(theta,thetamax);
theta=max(theta,thetamin);

7-21
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E.E. APPLICATION OFAPPLICATION OF SPSASPSA
• Numerical Study: SPSA vs. FDSA
• Consider problem of developing neural net controller 

(wastewater treatment plant where objectives are clean water 
and methane gas production)

• Neural net is function approximator that takes current 
information about the state of system and produces control 
action

• Lk(θ) = tracking error,
θ = neural net weights

• Need to estimate θ in real-time; used nondecaying ak = a, ck =
c due to nonstationary dynamics

• p = dim(θ) = 412
• More information in Example 7.4 of ISSO
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Wastewater Treatment SystemWastewater Treatment System
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RMS Error for ControllerRMS Error for Controller
in Wastewater Treatment Modelin Wastewater Treatment Model

0101600-Fig-8.37- 24
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F. ADAPTIVE SIMULTANEOUS F. ADAPTIVE SIMULTANEOUS 
PERTURBATION METHODPERTURBATION METHOD

• Standard SPSA exhibits common “1st-order” behavior 
– Sharp initial decline
– Slow convergence in final phase
– Sensitivity to units/scaling for elements of θ

• “2nd-order” form of SPSA exists for speeding convergence, 
especially in final phase (analogous to Newton-Raphson)
– Adaptive simultaneous perturbation (ASP) method (details 

in Section 7.8 of ISSO)

• ASP based on adaptively estimating Hessian matrix

• Addresses long-standing problem of finding “easy” method 
for Hessian estimation

• Also has uses in nonoptimization applications (e.g., Fisher 
information matrix in Subsection 13.3.5 of ISSO)

( ) ∂≡
∂ ∂ T

L2 ( )H θθ
θ θ
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Overview of ASPOverview of ASP
• ASP applies in either

(i) Standard SPSA setting where only L(θ) measurements 
are available (as considered earlier) (“2SPSA” algorithm)

— or —
(ii) Stochastic gradient (SG) setting where L(θ) and g(θ) 

measurements are available (“2SG” algorithm)
• Advantages of 2nd-order approach

— Potential for speedier convergence
— Transform invariance (algorithm performance unaffected 

by relative magnitude of θ elements)
• Transform invariance is unique to 2nd-order algorithms

— Allows for arbitrary scaling of θ elements 
— Implies ASP automatically adjusts to chosen units for θ
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Cost of ImplementationCost of Implementation
• For any p, the cost per iteration of ASP is 

Four loss measurements for 2SPSA
⎯ or ⎯

Three gradient measurements for 2SG

• Above costs for ASP compare very favorably with previous 
methods:

O(p2) loss measurements (y(•)) per iteration in FDSA setting 
(e.g., Fabian, 1971)

O(p) gradient measurements per iteration in SG setting 
(e.g., Ruppert, 1985)

• If gradient/Hessian averaging or y(•)-based iterate blocking is 
used, then additional measurements needed per iteration
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Efficiency Analysis for ASPEfficiency Analysis for ASP
• Can use asymptotic normality of  2SPSA and 2SG to 

compare asymptotic RMS errors (as in basic SPSA) against 
best possible asymptotic RMS of SPSA and SG, say          

and  

• 2SPSA:  With ak =1/k and ck = c /k1/6 (k ≥ 1)

• 2SG:  With ak = 1/k and any valid ck

• Interpretation: 2SPSA (with ak = 1/k) does almost as well as 
unobtainable best SPSA; RMS error differs by < factor of 2

• 2SG (with ak = 1/k) does as well as the analytically optimal 
SG (rarely available)

∗
SPSARMS ∗

SGRMS

< ∀ >
SPSA

         c
RMS*

RMS of 2SPSA 2 0

SG
 = 

RMS*
RMS of 2SG 1
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G.G.EXTENSIONS AND FURTHER RESULTSEXTENSIONS AND FURTHER RESULTS

• There are variations and enhancements to “standard”
SPSA of Section B

• Section 7.7 of ISSO discusses:

(i) Enhanced convergence through gradient 
averaging/smoothing 

(ii) Constrained optimization

(iii) Optimal choice of Δk distribution

(iv) One-measurement form of SPSA

(v) Global optimization

(vi) Noncontinuous (discrete) optimization
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(i) Gradient Averaging and Gradient (i) Gradient Averaging and Gradient 
SmoothingSmoothing

• These approaches may yield improved convergence in some 
cases

• In gradient averaging is simply replaced by the 
average of several (say, q) SP gradient estimates
– This approach uses 2q values of y(•) per iteration
– Spall (1992) establishes theoretical conditions for when this 

is advantageous, i.e., when lower MSE compensates for 
greater per-iteration cost (2q vs. 2, q >1)

– Essentially, beneficial in a high-noise environment 
(consistent with intuition!)

• In gradient smoothing, gradient estimates averaged across 
iterations according to scheme that carefully balances past 
estimates with current estimate 
– Analogous to “momentum” in neural net/backpropagation 

literature

k kˆˆ ( )θg
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(ii) Constrained Optimization(ii) Constrained Optimization
• Most practical problems involve constraints on θ
• Numerous possible ways to treat constraints (simple 

constraints discussed in Section D)
• One approach based on projectionsprojections (exploits well-known 

Kuhn-Tucker framework)
• Projection approach keeps                             in valid region 

for all k by projecting      into a region interior to the valid 
region
– Desirable in real systems to keep                  (in addition 

to    ) inside valid region to ensure physically achievable 
solution while iterating

•• Penalty functionsPenalty functions are general approach that may be easier 
to use than projections
– However, penalty functions require care for efficient 

implementation

±k k k k cˆ ˆand  θ θ Δ

±k k kcθ̂ Δ
kθ̂

kθ̂
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(iii) Optimal Choice of (iii) Optimal Choice of ΔΔk DistributionDistribution
• Sections 7.3 and 7.4 of ISSO discuss sufficient conditions 

for Δk distribution (see also Sections B and C here)
– These conditions guide user since user typically has full 

control over distribution

– Uniform and normal distributions do not satisfy conditions

• Asymptotic distribution theory shows that symmetric 
Bernoulli distribution is asymptotically optimal

– Optimal in both an MSE and nearness-probability sense

– Symmetric Bernoulli is trivial to generate by Monte Carlo

• Symmetric Bernoulli seems optimal in many practical (finitefinite--
samplesample) problems

– One exception mentioned in Section 7.7 of ISSO (robot 
control problem): segmented uniform distribution
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(iv) One(iv) One--Measurement SPSAMeasurement SPSA
• Standard SPSA use two loss function measurements/iteration
•• OneOne--measurementmeasurement SPSA based on gradient approximation:

• As with two-measurement SPSA this form is unbiased 
estimate of to within 

• Theory shows standard two-measurement form generally 
preferable in terms of total measurements needed for effective 
convergence
– However, in some settings, one-measurement form is 

preferable
– One such setting: control problems with significant 

nonstationarities

⎡ ⎤+
⎢ ⎥Δ⎢ ⎥

= ⎢ ⎥
⎢ ⎥
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(v) Global Optimization(v) Global Optimization

• SPSA has demonstrated significant effectiveness in global global 
optimization optimization where there may be multiple (local) minima

• One approach is to inject Gaussian noise to right-hand 
side of standard SPSA recursion:

where bk → 0 and wk ∼ N(0,Ip×p)
• Injected noise wk generated by Monte Carlo 

• Eqn. (*) has theoretical basis for formal convergence 
(Section 8.4 of ISSO)

+ = − +θ θ θk k k k k k ka b                         1ˆ ˆ ˆˆ ( ) (*)g w
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(v) Global Optimization (Cont(v) Global Optimization (Cont’’d)d)
• Recent results show that bk = 0 is sufficient for global 

convergence in many cases (Section 8.4 of ISSO)

–– No injected noiseNo injected noise needed for global convergence

– Implies standard SPSA is global optimizer under 
appropriate conditions

• Numerical demo on some tough global problems with 
many local minima yield global solution
– Neither genetic algorithms nor simulated annealing able to 

find global minima in test suite

– No guarantee of analogous relative behavior on other 
problems

• Regularity conditions for global convergence of SPSA 
difficult to check
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(vi) (vi) NoncontinuousNoncontinuous (Discrete) Optimization(Discrete) Optimization
• Basic SPSA framework for L(θ) differentiable in θ

• Many important problems have elements in θ taking only 
discrete (e.g., integer) values

• There have been extensions to SPSA to allow for discrete θ

– Brief discussion in Section 7.7 of ISSO; see also references 
at SPSA Web site

• SP estimate            produces descent information although 
gradient not defined

• Key issue in implementation is to control iterations      and 
perturbations                  to ensure they are valid θ values   

k kˆˆ ( )θg

ˆ k k kc±θ Δ
θkˆ
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Contact and Other InformationContact and Other Information
• Contact: James C. Spall

james.spall@jhuapl.edu
240-228-4960

• SPSA web site
www.jhuapl.edu/SPSA

• Additional relevant information at site for related book 
Introduction to Stochastic Search and Optimization

www.jhuapl.edu/ISSO

• Tutorial paper (available at SPSA web site):   
Spall, J. C. (1998), “An Overview of the Simultaneous 
Perturbation Method for Efficient Optimization,” Johns 
Hopkins APL Technical Digest, vol. 19, pp. 482–492.


